organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1,3,3-Trimethyl-1,2,3,4-tetrahydropyrido[1,2-a]benzimidazol-1-ol

Sayed Hasan Mehdi,^a Rokiah Hashim,^a Raza Murad Ghalib,^a Chin Sing Yeap^b‡ and Hoong-Kun Fun^b*§

^aSchool of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 18 June 2010; accepted 23 June 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.046; wR factor = 0.117; data-to-parameter ratio = 15.9.

In the title compound, $C_{14}H_{18}N_2O$, the benzimidazole grouping is close to planar, with a maximum deviation of 0.042 Å; the six-membered non-aromatic ring adopts an envelope conformation. In the crystal structure, molecules are linked into infinite sheets lying parallel to the *bc* plane by $O-H\cdots N$ and $C-H\cdots O$ hydrogen bonds.

Related literature

For applications of benzimidazole derivatives, see: Horton *et al.* (2003); Insuasty *et al.* (2008*a,b*). For the preparation of the title compound, see: Grech *et al.* (1994). For ring conformations, see Cremer & Pople (1975). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental

Crystal data	
$C_{14}H_{18}N_2O$	a = 9.615 (5) Å
$M_r = 230.30$	b = 8.194 (4) Å
Monoclinic, $P2_1/c$	c = 15.965 (8) Å

 $\beta = 99.601 (12)^{\circ}$ $V = 1240.2 (11) \text{ Å}^{3}$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker APEXII DUO CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\rm min} = 0.971, T_{\rm max} = 0.995$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.117$ S = 1.023597 reflections

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O1 - H1O1 \cdots N1^{i} \\ C5 - H5A \cdots O1^{ii} \end{array}$	0.97 (2) 0.962 (15)	1.84 (2) 2.499 (15)	2.803 (2) 3.216 (2)	174 (2) 131.3 (11)
Commentary and any (i)		1.(3) $x + 1$	n 1	

 $\mu = 0.08 \text{ mm}^{-1}$

 $0.38 \times 0.12 \times 0.07 \text{ mm}$

13460 measured reflections

3597 independent reflections

2612 reflections with $I > 2\sigma(I)$

All H-atom parameters refined

T = 100 K

 $R_{\rm int} = 0.052$

226 parameters

 $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

SHM and RMG thank Universiti Sains Malaysia (USM) for the University Grant (1001/PTEKIND/8140152). HKF and CSY thank USM for the Research University Golden Goose Grant (1001/PFIZIK/811012). CSY also thanks USM for the award of a USM Fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5508).

References

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Grech, O., Sakellariou, R. & Speziale, V. (1994). J. Heterocycl. Chem. 31, 509– 511.

Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). *Chem. Rev.* **103**, 893–930. Insuasty, B., Orozco, F., Lizarazo, C., Quiroga, J., Abonía, R., Hursthouse, M.,

Nogueras, M. & Cobo, J. (2008a). Bioorg. Med. Chem. 16, 8492–8500.

Insuasty, B., Orozco, F., Quiroga, J., Abonía, R., Nogueras, M. & Cobo, J. (2008b). Eur. J. Med. Chem. 43, 1955–1962.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Thomson Reuters ResearcherID: A-5523-2009.

[§] Thomson Reuters ResearcherID: A-3561-2009.

supplementary materials

Acta Cryst. (2010). E66, o1832 [doi:10.1107/81600536810024487]

1,3,3-Trimethyl-1,2,3,4-tetrahydropyrido[1,2-a]benzimidazol-1-ol

S. H. Mehdi, R. Hashim, R. M. Ghalib, C. S. Yeap and H.-K. Fun

Comment

Benzimidazole derivatives are an important class of bioactive molecules and are well known due to their wide range of pharmacological activities as an anti-ulcers, anti-hypertensive, anti-viral, anti-fungal, anti-cancer, and anti-histaminic (Horton *et al.*, 2003; Insuasty *et al.*, 2008*a*, *b*) agents. Here we report the synthesis and the crystal structure of title compound.

In the title compound (Fig. 1), the benzimidazole group is essentially coplanar (N1/C1–C6/N2/C11) with the maximum deviation of 0.042 Å at atom C6. The N2/C7–C11 ring adopts an envelope conformation with Q=0.4933 (14) Å, θ =52.81 (15)° and φ =182.3 (2)° (Cremer & Pople, 1975).

In the crystal structure, the molecules are linked into infinite two-dimensional planes parallel to *bc* plane by the intermolecular O1—H1O1…N1 and C5—H5A…O1 hydrogen bonds (Fig. 2, Table 1).

Experimental

A mixture of *o*-phenylenediamine (0.108 g m) and dimedone (0.140 g m) in molar ratio 1:1 was refluxed in a mixture of acetic acid-ethanol (1:1 v/v) for 3 h (Grech *et al.*, 1994). The reaction mixture was dried on rotavapor at low pressure and further fractionated successively with diethyl ether, chloroform and ethanol. The ethanol fraction was dried on rotavapor and the dry mass so obtained was crystallized in methanol:chloroform (1:1) mixture to give yellow needles of (I) (55%, m.p. 451 K).

Refinement

All hydrogen atoms were located from the difference Fourier map and was refined freely.

Figures

Fig. 1. The molecular structure of (I) with 50% probability ellipsoids for non-H atoms.

Fig. 2. The crystal packing of (I), viewed down the b axis, showing the molecules linked into sheets lying parallel to bc. Intermolecular hydrogen bonds are shown as dashed lines.

1,3,3-Trimethyl-1,2,3,4-tetrahydropyrido[1,2-a]benzimidazol-1-ol

Crystal data	
$C_{14}H_{18}N_2O$	F(000) = 496
$M_r = 230.30$	$D_{\rm x} = 1.233 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2162 reflections
<i>a</i> = 9.615 (5) Å	$\theta = 3.1 - 29.6^{\circ}$
b = 8.194 (4) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 15.965 (8) Å	T = 100 K
$\beta = 99.601 \ (12)^{\circ}$	Needle, yellow
$V = 1240.2 (11) \text{ Å}^3$	$0.38 \times 0.12 \times 0.07 \text{ mm}$
Z = 4	

Data collection

Bruker APEXII DUO CCD diffractometer	3597 independent reflections
Radiation source: fine-focus sealed tube	2612 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.052$
φ and ω scans	$\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 2.6^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -13 \rightarrow 13$
$T_{\min} = 0.971, \ T_{\max} = 0.995$	$k = -11 \rightarrow 10$
13460 measured reflections	$l = -22 \rightarrow 18$

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
All H-atom parameters refined
$w = 1/[\sigma^2(F_o^2) + (0.0528P)^2 + 0.2357P]$ where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{max} < 0.001$

226 parameters	$\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.65445 (9)	0.44319 (11)	0.12156 (6)	0.0178 (2)
N1	0.40305 (10)	0.05504 (14)	0.22183 (7)	0.0176 (2)
N2	0.54560 (10)	0.19700 (13)	0.15038 (6)	0.0148 (2)
C1	0.32424 (12)	0.11377 (16)	0.14618 (8)	0.0160 (3)
C2	0.17999 (13)	0.09810 (17)	0.11474 (9)	0.0199 (3)
C3	0.12707 (13)	0.17745 (18)	0.03945 (9)	0.0215 (3)
C4	0.21420 (13)	0.27314 (18)	-0.00320 (8)	0.0199 (3)
C5	0.35783 (13)	0.28830 (17)	0.02639 (8)	0.0179 (3)
C6	0.41136 (12)	0.20479 (15)	0.10110 (8)	0.0152 (2)
C7	0.67647 (12)	0.27365 (16)	0.13019 (8)	0.0153 (3)
C8	0.79944 (12)	0.23815 (16)	0.20337 (8)	0.0164 (3)
C9	0.79390 (12)	0.07980 (16)	0.25468 (8)	0.0165 (3)
C10	0.65512 (13)	0.08393 (18)	0.29055 (8)	0.0186 (3)
C11	0.53240 (12)	0.10891 (16)	0.22157 (8)	0.0157 (3)
C12	0.70543 (14)	0.21133 (19)	0.04460 (9)	0.0208 (3)
C13	0.80018 (14)	-0.07437 (18)	0.20160 (9)	0.0218 (3)
C14	0.91813 (13)	0.08019 (19)	0.32872 (9)	0.0224 (3)
H1A	0.0269 (15)	0.1672 (18)	0.0155 (9)	0.020 (4)*
H2A	0.1203 (16)	0.033 (2)	0.1467 (10)	0.026 (4)*
H4A	0.1727 (15)	0.3345 (18)	-0.0553 (9)	0.016 (4)*
H5A	0.4140 (15)	0.3569 (19)	-0.0037 (9)	0.017 (4)*
H8A	0.8923 (16)	0.241 (2)	0.1794 (10)	0.025 (4)*
H8B	0.8028 (15)	0.334 (2)	0.2438 (10)	0.025 (4)*
H10A	0.6384 (15)	-0.0185 (19)	0.3209 (9)	0.018 (4)*
H10B	0.6583 (16)	0.177 (2)	0.3319 (10)	0.024 (4)*
H12A	0.7260 (17)	0.095 (2)	0.0457 (11)	0.030 (4)*
H12B	0.7853 (17)	0.279 (2)	0.0300 (11)	0.032 (4)*
H12C	0.6228 (18)	0.233 (2)	-0.0008 (11)	0.034 (5)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H13A	0.7168 (16)	-0.0878 (19)	0.1571 (10)	0.024 (4)*
H13B	0.8059 (15)	-0.171 (2)	0.2371 (10)	0.024 (4)*
H13C	0.8856 (17)	-0.074 (2)	0.1725 (11)	0.032 (4)*
H14A	0.9187 (16)	0.180 (2)	0.3648 (10)	0.028 (4)*
H14B	0.9107 (17)	-0.017 (2)	0.3658 (11)	0.034 (5)*
H14C	1.0108 (18)	0.082 (2)	0.3068 (11)	0.036 (5)*
H1O1	0.640 (2)	0.487 (3)	0.1756 (13)	0.050 (6)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0215 (4)	0.0149 (5)	0.0175 (5)	0.0005 (3)	0.0047 (3)	0.0024 (4)
N1	0.0167 (5)	0.0195 (6)	0.0166 (5)	-0.0010 (4)	0.0028 (4)	0.0018 (4)
N2	0.0138 (4)	0.0170 (5)	0.0130 (5)	-0.0010 (4)	0.0009 (4)	0.0014 (4)
C1	0.0169 (5)	0.0153 (6)	0.0158 (6)	0.0004 (4)	0.0024 (4)	-0.0007 (5)
C2	0.0155 (5)	0.0206 (7)	0.0232 (7)	-0.0010 (5)	0.0020 (5)	-0.0017 (6)
C3	0.0171 (6)	0.0229 (7)	0.0229 (7)	0.0009 (5)	-0.0014 (5)	-0.0041 (6)
C4	0.0208 (6)	0.0210 (7)	0.0164 (6)	0.0036 (5)	-0.0018 (5)	-0.0009 (5)
C5	0.0202 (6)	0.0173 (7)	0.0157 (6)	0.0013 (5)	0.0014 (5)	0.0001 (5)
C6	0.0148 (5)	0.0160 (6)	0.0144 (6)	0.0001 (4)	0.0010 (4)	-0.0019 (5)
C7	0.0154 (5)	0.0150 (6)	0.0157 (6)	-0.0013 (4)	0.0036 (4)	0.0021 (5)
C8	0.0157 (5)	0.0162 (6)	0.0167 (6)	-0.0007 (4)	0.0007 (4)	0.0004 (5)
C9	0.0145 (5)	0.0169 (6)	0.0170 (6)	0.0002 (4)	0.0000 (4)	0.0018 (5)
C10	0.0176 (5)	0.0229 (7)	0.0147 (6)	-0.0007 (5)	0.0012 (4)	0.0041 (6)
C11	0.0168 (5)	0.0153 (6)	0.0150 (6)	0.0006 (4)	0.0030 (4)	0.0017 (5)
C12	0.0223 (6)	0.0249 (8)	0.0164 (6)	0.0014 (5)	0.0067 (5)	-0.0008 (6)
C13	0.0230 (6)	0.0177 (7)	0.0241 (7)	0.0018 (5)	0.0017 (5)	0.0002 (6)
C14	0.0185 (6)	0.0244 (8)	0.0220(7)	0.0007 (5)	-0.0030(5)	0.0038 (6)

Geometric parameters (Å, °)

O1—C7	1.4085 (17)	C8—C9	1.5400 (19)
O1—H1O1	0.96 (2)	C8—H8A	1.029 (15)
N1-C11	1.3203 (16)	C8—H8B	1.012 (16)
N1—C1	1.3997 (17)	C9—C13	1.528 (2)
N2—C11	1.3700 (17)	C9—C14	1.5340 (18)
N2—C6	1.3965 (16)	C9—C10	1.5378 (18)
N2—C7	1.4890 (16)	C10-C11	1.4878 (18)
C1—C2	1.4000 (18)	C10—H10A	0.995 (16)
C1—C6	1.4060 (18)	C10—H10B	1.004 (16)
C2—C3	1.387 (2)	C12—H12A	0.976 (18)
C2—H2A	0.988 (16)	C12—H12B	1.006 (17)
C3—C4	1.404 (2)	C12—H12C	0.998 (17)
C3—H1A	0.979 (14)	C13—H13A	0.984 (16)
C4—C5	1.3886 (18)	C13—H13B	0.967 (17)
C4—H4A	0.997 (15)	C13—H13C	1.009 (17)
C5—C6	1.3968 (18)	C14—H14A	1.000 (17)
С5—Н5А	0.961 (15)	C14—H14B	1.001 (18)
C7—C12	1.5271 (19)	C14—H14C	1.010 (17)

С7—С8	1.5450 (18)		
C7-01-H101	108.6 (12)	H8A—C8—H8B	106.5 (12)
C11—N1—C1	104.90 (11)	C13—C9—C14	109.35 (11)
C11—N2—C6	106.65 (10)	C13—C9—C10	109.98 (11)
C11—N2—C7	126.90 (10)	C14—C9—C10	109.00 (11)
C6—N2—C7	126.43 (10)	C13—C9—C8	113.17 (11)
N1—C1—C2	129.74 (12)	C14—C9—C8	108.46 (11)
N1-C1-C6	109.93 (11)	C10—C9—C8	106.78 (10)
C2—C1—C6	120.29 (12)	C11—C10—C9	110.96 (11)
C3—C2—C1	117.79 (12)	C11—C10—H10A	107.7 (8)
С3—С2—Н2А	122.8 (9)	C9-C10-H10A	112.6 (8)
C1—C2—H2A	119.4 (9)	C11—C10—H10B	108.4 (9)
C2—C3—C4	121.33 (12)	C9-C10-H10B	109.2 (9)
C2—C3—H1A	119.5 (9)	H10A—C10—H10B	108.0 (12)
C4—C3—H1A	119.1 (9)	N1-C11-N2	113.35 (11)
C5—C4—C3	121.67 (13)	N1-C11-C10	125.66 (12)
С5—С4—Н4А	118.4 (8)	N2-C11-C10	120.98 (11)
С3—С4—Н4А	119.9 (8)	C7—C12—H12A	112.3 (10)
C4—C5—C6	116.79 (12)	C7—C12—H12B	106.4 (10)
C4—C5—H5A	119.5 (9)	H12A—C12—H12B	112.6 (14)
С6—С5—Н5А	123.7 (9)	C7—C12—H12C	110.3 (10)
N2-C6-C5	132.67 (11)	H12A—C12—H12C	108.8 (14)
N2-C6-C1	105.13 (11)	H12B—C12—H12C	106.2 (14)
C5—C6—C1	122.06 (11)	C9—C13—H13A	112.9 (9)
01—C7—N2	108.58 (10)	C9—C13—H13B	110.6 (9)
O1—C7—C12	106.80 (10)	H13A—C13—H13B	106.9 (13)
N2-C7-C12	109.84 (10)	C9—C13—H13C	111.5 (10)
O1—C7—C8	110.08 (10)	H13A—C13—H13C	107.1 (13)
N2—C7—C8	108.95 (10)	H13B—C13—H13C	107.4 (13)
С12—С7—С8	112.51 (11)	C9—C14—H14A	111.9 (9)
C9—C8—C7	118.09 (10)	C9—C14—H14B	109.3 (10)
С9—С8—Н8А	108.9 (9)	H14A—C14—H14B	107.6 (13)
С7—С8—Н8А	108.5 (9)	C9—C14—H14C	110.6 (10)
С9—С8—Н8В	108.3 (9)	H14A—C14—H14C	105.5 (13)
С7—С8—Н8В	106.0 (9)	H14B—C14—H14C	111.8 (14)
C11—N1—C1—C2	-177.80 (14)	C6—N2—C7—C12	-58.00 (16)
C11—N1—C1—C6	-0.14 (15)	C11—N2—C7—C8	0.12 (17)
N1—C1—C2—C3	176.20 (13)	C6—N2—C7—C8	178.34 (11)
C6—C1—C2—C3	-1.2 (2)	O1—C7—C8—C9	148.09 (11)
C1—C2—C3—C4	-1.3 (2)	N2—C7—C8—C9	29.14 (15)
C2—C3—C4—C5	2.2 (2)	C12—C7—C8—C9	-92.92 (14)
C3—C4—C5—C6	-0.5 (2)	C7—C8—C9—C13	64.20 (14)
C11—N2—C6—C5	173.80 (14)	C7—C8—C9—C14	-174.28 (11)
C7—N2—C6—C5	-4.7 (2)	C7—C8—C9—C10	-56.95 (15)
C11—N2—C6—C1	-1.75 (14)	C13—C9—C10—C11	-68.67 (15)
C7—N2—C6—C1	179.73 (11)	C14—C9—C10—C11	171.46 (11)
C4—C5—C6—N2	-176.96 (13)	C8—C9—C10—C11	54.49 (14)
C4—C5—C6—C1	-2.03 (19)	C1—N1—C11—N2	-1.04 (15)

supplementary materials

	1 00 (14)	C1 1	1 011 010		177 67	(10)
N1-C1-C6-N2	1.20 (14)	CI-N	I-CII-CI0		177.57	(12)
C2C1C6N2	179.11 (11)	C6—N	12—C11—N1		1.82 (15	5)
N1—C1—C6—C5	-174.94 (11)	C7—N	12—C11—N1		-179.67	7 (11)
C2-C1-C6-C5	3.0 (2)	C6—N	12—C11—C10		-176.86 (12)	
C11—N2—C7—O1	-119.77 (13)	C7—N	12—C11—C10		1.64 (19))
C6—N2—C7—O1	58.45 (16)	С9—С	C10—C11—N1		150.69	(13)
C11—N2—C7—C12	123.78 (14)	С9—С	C10—C11—N2		-30.80	(17)
Hydrogen-bond geometry (Å, °)						
D—H···A	<i>D</i> —	-H	H···A	$D \cdots A$	I	⊃—H…A
01—H101…N1 ⁱ	0.97	7 (2)	1.84 (2)	2.803 (2)	1	74 (2)
C5—H5A…O1 ⁱⁱ	0.96	52 (15)	2.499 (15)	3.216 (2)	1	31.3 (11)
Symmetry codes: (i) – <i>x</i> +1, <i>y</i> +1/2, – <i>z</i> +1/	2; (ii) - <i>x</i> +1, - <i>y</i> +1,	, <i>-z</i> .				

Fig. 1

Fig. 2

